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ABSTRACT

A novel shadowing and coherent-backscattering model is utilized in the analysis of the single-scattering albedos and phase func-
tions, local surface roughness, and regolith porosity of specific lunar mare regions imaged by the AMIE camera (Advanced Moon
micro-Imager Experiment) onboard ESA SMART-1 mission. Shadowing due to the regolith particles is accounted via ray-tracing com-
putations for densely-packed particulate media with a fractional-Brownian-motion interface with free space. The shadowing modeling
allows us to derive the scattering phase function for a ∼100-μm volume element of the lunar mare regolith. The volume-element phase
function is explained by coherent-backscattering modeling, where the fundamental single scatterers are the wavelength-scale parti-
cle inhomogeneities or the smallest fraction of the particles on the lunar surface. The phase function of the fundamental scatterers
is expressed as a sum of two Henyey-Greenstein terms, accounting for increased backward scattering as well as increased forward
scattering. Based on the modeling of the AMIE lunar photometry, we conclude that most of the lunar mare opposition effect is caused
by coherent backscattering within volume elements comparable in size to typical lunar particles, with only a small contribution from
shadowing effects.
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1. Introduction

The Moon exhibits an opposition effect (Rougier 1933), that is, a
nonlinear increase of disk-integrated brightness with decreasing
solar phase angle, the angle between the Sun and the observer
as seen from the object. Whereas the opposition effect is a ubiq-
uitous phenomenon for atmosphereless solar-system objects at
large, the lunar opposition effect is of particular significance as
we can witness the brightness of the full Moon with our own
bare eyes. In the opposition night, the Moon is roughly twice as
bright as in the nights just before and after the opposition.

The lunar opposition effect lacks a widely-accepted phys-
ical explanation. It has been traditionally explained by mu-
tual shadowing (Bowell et al. 1989; Hapke & van Horn 1963;
Lumme & Bowell 1981; Lumme & Irvine 1982) among re-
golith particles (sizes in several tens of microns) large com-
pared to the wavelength of incident light (SM; shadowing mech-
anism): the particles hide their own shadows at exact opposition.
More recently, the coherent-backscattering mechanism (CBM)
has been introduced as a possible explanation for the opposition
effects of selected solar-system objects (e.g., Shkuratov 1988;
Muinonen 1990; Hapke 1990; Hapke et al. 1993; Mishchenko &
Dlugach 1993). CBM is a multiple-scattering interference mech-
anism, where electromagnetic waves propagating through the

same scatterers in opposite directions interfere constructively in
the backward-scattering direction but with varying interference
characteristics in other directions.

For accruing knowledge on the properties of fundamen-
tal scatterers within the lunar regolith, SM needs to be accu-
rately modeled. SM is affected by surface roughness, that is, the
stochastic geometry of the interface between free space and re-
golith (Parviainen & Muinonen 2009, 2007; Peltoniemi 1993;
Lumme et al. 1990). The dependence of SM on the angles of
incidence and emergence (as measured from the outward sur-
face normal) as well as the azimuth between the planes of inci-
dence and emergence allows for the estimation of the surface-
roughness parameters.

In order to simulate the geometry of the lunar regolith, we
make use of a dropping-based algorithm with spherical particles
in modeling the bulk particulate medium, as well as fractional-
Brownian-motion surfaces (fBm) and Gaussian random surfaces
(Gs) in modeling the interface between free space and the partic-
ulate medium (Parviainen & Muinonen 2009, 2007; Muinonen
et al. 2002, 2001; Peitgen & Saupe 1988). The single spherical
particle and its immediate vicinity mimics what we call a vol-
ume element of the lunar regolith. The size of the volume ele-
ment is thus of the order of 100 μm, that is, much larger than the
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wavelength of incident visible sunlight. We extract the effects of
the stochastic geometry from the lunar photometry and, thereby,
obtain the volume-element scattering phase function of the lunar
regolith locations studied. The volume-element phase function
allows us to constrain the physical properties of the typical re-
golith particles much larger than the wavelength.

We assume, hierarchically, that the volume element consists
of a finite random medium of fundamental scatterers and that
multiple scattering among these scatterers gives rise to coherent
backscattering. In order to compute coherent backscattering by
a finite medium large compared to the wavelength, such as the
inhomogeneous lunar particles, we rely on the theoretical and
computational methods put forward by Muinonen (2004) and
Muinonen et al. (2010). To support the validity of the present
approach, we refer the reader to the recent comparison to exact
electromagnetic methods by Muinonen & Zubko (2010).

Due to the absence of polarimetric observations, we adopt
a scalar model for coherent backscattering as summarized in
Muinonen et al. (2010). Mishchenko & Dlugach (1992) point
out the limited accuracy of the scalar model: the model can result
in backscattering enhancement factors overestimated by 20% at
maximum. Nevertheless, for the present preliminary and limited
analysis, we consider the scalar model to be adequate in the eval-
uation of the leading scattering effects.

The Clementine space mission has been the first mission to
obtain high-resolution photometry over the entire lunar surface.
Hillier et al. (1999) have carried out a Clementine-based disk-
resolved multispectral photometric study of the Moon. They
have analyzed the photometric properties of the lunar surface
with the UV/Vis camera in four different photometric chan-
nels between 400–1000 nm at a phase-angle range of 0–85◦
mainly in the nadir-pointing geometry (zero angle of emer-
gence). Hillier et al. have divided the lunar surface into two dif-
ferent types of terrain, mare and highlands, and derived synthe-
sized phase curves for both terrain types over the entire lunar
surface for, e.g., photometric corrections in mineralogical stud-
ies. According to them, the function fits suggest that the mare
regions exhibit broader opposition effects, claimed to be indica-
tive of surfaces more compacted than on the highlands regions.
They have also used the Clementine data to study the physical
properties of the lunar surface by fitting a photometric model
that they have derived from that by Hapke (1984). For the mare
regions, they have explained the entire opposition effect by SM
with a halfwidth of ∼8◦.

Shkuratov et al. (1999) have carried out an analysis of the
lunar opposition effect analyzing its causes using theoretical,
observational, and experimental methods. They have reached
the conclusion that the lunar opposition effect is at least partly
caused by CBM. Hapke et al. (1993) have measured so-called
polarization ratios for a number of lunar samples and sug-
gested diagnostic tools for evaluating the importance of coher-
ent backscattering and shadowing for the lunar opposition effect.
Hapke et al. have concluded that SM and CBM contribute to the
lunar opposition effect in roughly equal shares.

Kaydash et al. (2009) have analyzed SMART-1 AMIE im-
ages of the lunar mare regions and swirls using so-called phase-
ratio images and empirical modeling of the photometric depen-
dences in observation and illumination geometries away from
opposition. They have indicated regions that show anomalous
photometric dependences and have offered interpretations re-
lated to the geological evolution of the Moon. Kaydash et al.
offer an up-to-date assessment of the various phases of the
SMART-1 mission and of the AMIE imaging geometries as well
as the status of the image processing.

Fig. 1. The lunar regions observed by AMIE onboard ESA SMART-1
(Advanced Moon micro-Imager Experiment) and analyzed in the
present study overlaid on the Clementine albedo map: 1) Oceanus
Procellarum, around Reiner Gamma; 2) Oceanus Procellarum, between
Mons Rümker and the Mairan crater; 3) Mare Imbrium, north of
Copernicus crater; and 4) Mare Serenitatis.

In what follows, we carry out physical modeling of the shad-
owing and coherent backscattering phenomena and seek for a
plausible interpretation in terms of fundamental physical param-
eters. In Sect. 2, we describe the SMART-1 AMIE imaging data
(Pinet et al. 2005) utilized in our assessment of lunar scattering,
porosity, and surface roughness. Section 3 includes the theoret-
ical modeling for the lunar mare scattering law and the inverse
methods to derive the model parameters from the imaging data.
In Sect. 4, we apply the methods to the chosen set of SMART-1
AMIE data and discuss the results. We close the article with con-
clusions and future prospects in Sect. 5.

2. Observations

We have used selected data obtained by the AMIE instrument
onboard the ESA SMART-1 spacecraft specially operated to pro-
vide a wide range of observation geometries (Racca et al. 2002;
Foing et al. 2006; Josset et al. 2006). We include four differ-
ent lunar mare regions in our study (Fig. 1). Mare regions were
selected for this study as they offer, in general, a relatively ho-
mogeneous surface with little topographic tilts (e.g., crater rims)
that could pose difficulties in the determination of the observa-
tion geometry. Each of the four regions covers several hundreds
of square kilometers of lunar surface. When selecting the re-
gions, we have required that they have been imaged by AMIE
across a wide range of phase angles (α), including the opposi-
tion geometry. The phase-angle range covered is 0–109◦, with
incidence and emergence angles as counted from the outward
normal vector (ι and ε) ranging within 7–87◦ and 0–53◦, respec-
tively. The pixel scale varies from 288 m down to 29 m dur-
ing the extended mission phase ended by the SMART-1 space-
craft crashing into the lunar surface on September 3, 2006. Note
that off-nadir-pointing observations have allowed for the exten-
sive phase-angle coverage. In total, 220 images are used for the
present study.

Biases and dark currents were subtracted from the images
in the usual way, followed by a flat-field correction. New dark-
current reduction procedures have recently been derived from
in-flight measurements to replace the ground-calibration im-
ages that were rendered practically useless by the large radi-
ation dose that AMIE experienced during the 13-month jour-
ney of SMART-1 to the Moon (Grieger 2008). The clear (or
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Fig. 2. The multiangular photometry reduced from the lunar mare re-
gions depicted in Fig. 1 as a function of the phase angle α. The opposi-
tion effect shows up as abrupt nonlinear brightening towards opposition.
The viewing geometries of the AMIE lunar images are also depicted.
Each geometry is fixed by three angles, for example, the angles of in-
cidence and emergence (ι and ε) and the azimuth angle φ (that can be
replaced by α).

panchromatic) filter was chosen for the present study as it pro-
vides the largest field of view, consisting of 512×512 pixels, and
usually also the best signal-to-noise ratio.

Since the surface footprint of a single AMIE image could
span several degrees in selenocentric longitude and latitude, the
illumination geometry, that is, ι, ε, α, and the azimuth angle be-
tween the incident and emergent directions φ, was computed
separately for each pixel in the images used in the photomet-
ric analysis by utilizing the NASA Navigation and Ancillary
Information Facility SPICE software toolkit with the latest and
corrected SMART-1 AMIE SPICE kernels.

The photometric data points were extracted as follows. First,
on average, 50 sample areas of 10× 10 pixels were chosen
by hand from each image, to exclude large craters and albedo
anomalies from the analysis. Second, the surface normal, ι, ε, φ,
and αwere computed for each pixel in each sample area. Finally,
the illumination angles and the observed intensity were averaged
over each sample area. In total, the images used in the study re-
sulted, for the four mare regions, in approximately 12 000 pho-
tometric sample points (Fig. 2). We note that the lunar opposi-
tion effect in Fig. 2 agrees in steepness over the phase-angle of
0.0–2.5◦ with the earlier lunar mare analysis using AMIE data
by Kaydash et al. (2008).

3. Theoretical and numerical methods

3.1. Scattering model for mare regions

Consider diffuse scattering of light from a semi-infinite particu-
late regolith with a rough interface towards free space. The re-
flection coefficient R relates the incident flux density πF0 and the
emergent intensity I as

I(μ, μ0, φ) = μ0R(μ, μ0, φ)F0,

μ0 = cos ι,

μ = cos ε. (1)

In order to model the scattering from the dark lunar mare re-
gions, we utilize the Lommel-Seeliger reflection coefficient cor-
rected for shadowing as

R(μ, μ0, φ) =
1
4
ω̃V PV (α)S (μ, μ0, φ)

1
μ + μ0

,

∫
(4π)

dΩ
4π

PV (α) = 1, (2)

where ω̃V is the single-scattering albedo of the volume ele-
ment V , PV is the normalized volume-element scattering phase
function, and S accounts for shadowing. For phase angle α = 0◦,
we have S ≡ 1.

Without the shadowing function S , the reflection coefficient
in Eq. (2) coincides with the Lommel-Seeliger reflection coef-
ficient, which is the first-order multiple-scattering solution to
the radiative transfer equation for a semi-infinite plane-parallel
medium of scatterers. The reflection coefficient in Eq. (2) is ap-
plicable to dark media such as the lunar mare regolith: the con-
tributions proportional to ω̃k

V , k ≥ 2 are assumed negligible.
Consider next the definition of the volume element. It is well

known that the radiative transfer theory succeeds in describing
the angular characteristics of regolith reflection coefficients out-
side the opposition regime. This occurs in spite of the fact that
the theory is known to be, strictly, inapplicable to close-packed
regoliths of particles. This allows us to assume that the volume
element V extends over a typical lunar particle and its immediate
vicinity so that the size of the element is of the order of ∼100 μm.

The geometric albedo p is the ratio of the disk-integrated
brightness of an object and the disk-integrated brightness of a
normally illuminated Lambertian disk in the exact backscatter-
ing direction α = 0◦. Considering a spherical object with surface
scattering characteristics described by the reflection coefficient
in Eq. (2), we have

p =
1
8
ω̃V PV (α = 0◦). (3)

This coincides with the geometric albedo pV of the volume ele-
ment V: pV = p.

3.2. Coherent-backscattering modeling for p, ω̃V , and PV

We model the lunar mare geometric albedo p (Eq. (3)) as well as
the volume-element albedo ω̃V and phase function PV (Eq. (2))
in terms of scalar coherent backscattering by a finite medium of
fundamental scatterers (Muinonen et al. 2010). We denote the
single-scattering albedo and phase function of the fundamen-
tal scatterers by ω̃0 and P0. We further introduce the extinction
mean free path � = 1/ke (ke is the extinction coefficient) for
the finite medium, which we typically express in a dimension-
less form k� = 2π�/λ, where k and λ are the wave number and
wavelength. We assume that the volume element V is spherical
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and that the radius of the volume element is 60 μm, mimicking
a cubic element with an edgelength of 100 μm.

For describing the phase function P0, we utilize double
Henyey-Greenstein (H-G) scattering phase functions P2HG:

P0(θ) = P2HG(θ) = w
1 − g2

1(
1 + g2

1 − 2g1 cos θ
) 3

2

+(1 − w)
1 − g2

2(
1 + g2

2 − 2g2 cos θ
) 3

2

,

g = wg1 + (1 − w)g2,

∫
(4π)

dΩ
4π

P0(θ) = 1, (4)

where θ = π − α is the scattering angle, g1 and g2 describe
the forward and backward asymmetries, w is the normalized
weight of the first H-G term, and g is the asymmetry parame-
ter of the phase function. The first H-G term describes the com-
mon increase towards the forward-scattering direction, whereas
the second term describes the increase from intermediate scatter-
ing angles towards the backward-scattering direction. Note that
it remains as an open question what the increase towards the
forward-scattering direction means in the case of fundamental
scatterers constituting lunar particles much larger than the wave-
length.

In the coherent-backscattering modeling, we require that the
resulting lunar mare geometric albedos (Eq. (3)) be p < 0.2
and that the volume-element single-scattering albedos be ω̃V >
0.5. Such single-scattering albedos are comparable to the cor-
responding albedos measured in the laboratory for single lu-
nar analog particles large compared to the wavelength (Piironen
et al. 1998). The geometric-albedo range for the mare regions
has been estimated with the help of the study by Lumme & Irvine
(1982).

3.3. Ray-tracing modeling for R

A numerical geometric-optics ray-tracing code has been devel-
oped to derive the volume-element scattering phase function PV
and the combined mutual and rough-surface shadowing func-
tion S in Eq. (2) for a particulate medium mimicking the lunar
regolith (Parviainen & Muinonen 2007, 2009). The code uses
Monte-Carlo ray tracing to compute the reflection coefficient R
in Eq. (2) for a medium composed of opague spherical particles
(Fig. 3).

For deriving PV and S from the lunar photometry, we assume
that the particle surfaces, that is, the surfaces of the volume el-
ements, follow the Lommel-Seeliger scattering law (mathemat-
ical form equivalent to that in Eq. (2) without the shadowing
function; e.g., Bowell et al. 1989). The scattering phase function
for the fictituous particle-surface scatterers P∂V is also modeled
using a double H-G phase function, P∂V = P2HG. To discrim-
inate between the double H-G parameters of the fundamental
scatterers and those of the particle-surface scatterers, we utilize
w∂V , g1, ∂V , and g2, ∂V for P∂V . The current shadowing modeling
is an advanced version of earlier work in Muinonen et al. (2001)
and Stankevich et al. (1999). According to our experience, the
present parameterization of the volume element results in ex-
cellent fits to lunar mare photometry. We return to the physical
interpretation of the modeling below.

Instead of limiting ourselves to the principal plane with vary-
ing ι and ε and φ = 0◦ or 180◦, we have computed the shadow-
ing function over the entire hemisphere, allowing us to account
for azimuthal shadowing effects arising from varying φ. Recent

Fig. 3. Porous random medium of spherical particles with fractional-
Brownian-motion boundary surface: Hurst exponent H = 0.4, standard
deviation of heights σ = 0.06, and volume density v = 0.35.

studies (e.g., Shepard & Campbell 1998; Shkuratov et al. 2005;
Parviainen & Muinonen 2007; Jehl et al. 2008) have demon-
strated that azimuthal shadowing contributes significantly to the
photometric response by a planetary regolith surface.

The simulation has consisted of two parts: the generation of
the particulate media and the Monte-Carlo ray tracing in the
media. First, using a dropping-based random-packing method
for five volume densities v = 0.2, 0.3, 0.4, 0.5, and 0.55, we
have generated a medium consisting of 106 spherical particles
with mean radii of 1/500 of the width of the medium. Second,
we have intersected the particulate media by two-dimensional
random fields to model the surface roughness with two param-
eters. We parameterize the fractional-Brownian-motion rough-
ness with the Hurst exponent H and the standard deviation of
heights of the whole field σ, while Gaussian roughness is pa-
rameterized by the correlation length l and σ. We thus describe
the regolith analog media with three parameters v, H or l, and σ.
Also, when considering media without external large-scale sur-
face roughness, we remove 20% of the medium in thickness
from the surface in order to remove a density gradient arising
from the dropping algorithm. For an example fBm surface, see
Fig. 3.

The Monte-Carlo simulation consists of ray tracing a large
number of geometry samples from the medium for each photo-
metric sample point. A single geometry sample consists of infor-
mation on whether the sample point on the particle surface is il-
luminated and on the local angles of incidence and emergence as
well as the local azimuth angle. Thus, the set of geometry sam-
ples represents the distribution of angles visible to the observer
(the AMIE camera) for the given observation geometry. Now,
the final model reflection coefficient R for a given photometric
point can be obtained as a sum of the contributions computed
from the illuminated geometry samples. This way of computing
the observed angle distribution for a given observation geome-
try (instead of direct ray tracing for R) allows us to fit arbitrary
reflection-coefficient models to the photometric data without a
need for computationally expensive additional ray tracing. For
each photometric sample point, we have computed 50 geometry
samples for 20 rough-surface realizations, yielding 1000 geom-
etry samples in total.

Based on the work by Muinonen et al. (2001) and Stankevich
et al. (1999), the shadowing function S can be assumed con-
stant over the surface of an individual spherical particle. This
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allows us to discriminate between the two parts, PV and S , in
the reflection coefficient R derived by least-squares fitting of the
ray-tracing model to the lunar photometry. Since the numerical
ray-tracing simulations utilize constituent spherical volume el-
ements with Lommel-Seeliger surface scattering laws, the true
volume-element scattering phase function PV(θ) is proportional
to the product of P∂V (θ) and an additional phase-angle dependent
function that results from the integration of the Lommel-Seeliger
cosine part over the surface of the spherical volume elements
(this integration can be done analytically and independently of S
as explained above):

PV (θ) = N−1P∂V (θ)

[
1 − cos

1
2
θ cot

1
2
θ ln

(
cot

1
4

(π − θ)
)]
,

N =
∫

(4π)

dΩ
4π

P∂V(θ)

×
[
1 − cos

1
2
θ cot

1
2
θ ln

(
cot

1
4

(π − θ)
)]
. (5)

The functional form of the shadowing function S now fol-
lows from Eq. (2) by dividing the model reflection coefficient
by the phase function of Eq. (5) and the Lommel-Seeliger co-
sine part. Note that the particle-surface scattering phase func-
tion P∂V (θ) emerges as an auxiliary computational tool to derive
PV (θ) and S .

3.4. Inversion

Inversion of the observations for the lunar surface properties
consists of two steps. First, the shadowing function S and the
volume-element phase function PV (in the relative sense) are de-
rived with the help of the aforedescribed shadowing modeling
for particulate media using least-squares analysis of the obser-
vations. This step will give us PV as well as the surface rough-
ness parameters H and σ and the regolith porosity v. Second, the
resulting PV is explained using scalar coherent-backscattering
modeling with realistic assumptions for the geometric albedo of
the lunar mare regions or, in other words, p = ω̃V PV/8. This
step allows us to constrain the single-scattering albedo ω̃0, the
single-scattering phase function P0, and the mean free path in
the form k� for the finite medium of fundamental scatterers mim-
icking a lunar volume element.

4. Results and discussion

In order to derive the lunar mare volume-element phase function,
a best-fit solution to the photometric observations was searched
from the computed fBm scattering models using the differential-
evolution global-optimization method (Storn & Price 1997). The
effects due to different values of v, H, and σ were small but no-
ticeable (Table 1). After the fit, the first-order approximation for
the volume-element phase function was obtained from Eq. (5)
based on the fit shown in Fig. 4. The volume-element phase func-
tion is depicted in Figs. 5 and 6.

In detail, the best-fit fBm parameters are as follows: v = 0.30,
H = 0.80, and σ = 0.05 with the rms value of 2.001 in the
units of Fig. 2. For comparison, the best-fit Gaussian model gives
v = 0.30, l = 0.50, and σ = 0.03 with the rms value of 2.083,
whereas the so-called smooth model gives v = 0.50 with the rms
value of 2.151. This offers a preliminary indication that the fBm
model is indeed the leading model for the lunar regolith. Table 1
shows how the particle-surface phase function P∂V (θ) and the
volume-element phase function PV (θ) (Eq. (5)), as well as the

Fig. 4. The multiangular AMIE photometry of the mare regions fitted
using the fBm-particulate-medium model with H = 0.80, σ = 0.05,
and v = 0.30, and a double Henyey-Greenstein particle-surface phase
function with w∂V = 0.001432, g1, ∂V = −0.9228, and g2, ∂V = −0.0546
(uppermost points). Also shown are the residuals shifted downward by
0.2 vertical units for clarity (lowermost points). See Table 1.

Fig. 5. The lunar mare volume-element phase function PV (see Eqs. (2)
and (5)). The phase function follows from dividing more than 12 000
SMART-1 AMIE original data points by best-fit model S (μ, μ0, φ)/(μ+
μ0) in Eq. (2).

rms values of the least-squares fits vary as a function of the fBm
parameters.

The lunar volume-element phase function exhibits a narrow
backscattering intensity surge. The most notable result of the
comparison of the photometric observations and numerical SM
modeling is that SM does not explain the intensity surge, even
for the most porous media considered in the study, v = 0.2.
Note that the Lommel-Seeliger scattering law corrected for shad-
owing in Eq. (2) is largely validated by the fact that, after
the division of the observational data with the model data for
S (μ, μ0, φ)/(μ+μ0), the remaining variation can be explained, to
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Table 1. Best-fit particle-surface phase functions P∂V(θ) modeled
as double Henyey-Greenstein phase functions (H-G) for media with
fractional-Brownian-motion surface roughness.

v H σ rms C w∂V g1, ∂V g2, ∂V

10−2 10−3 10−3

0.2 0.4 3 2.234 1.64 0.195 –0.9615 0.0203
4 2.286 1.63 0.180 –0.9633 0.0149
5 2.664 1.56 0.293 –0.9534 0.0023
6 2.467 1.63 0.252 –0.9554 0.0202

0.6 3 2.215 1.65 0.186 –0.9624 0.0201
4 2.293 1.66 0.252 –0.9544 0.0228
5 2.418 1.65 0.213 –0.9606 0.0232
6 2.500 1.43 0.222 –0.9610 –0.0287

0.8 3 2.219 1.64 0.182 –0.9630 0.0177
4 2.254 1.72 0.203 –0.9590 0.0334
5 2.326 1.61 0.260 –0.9559 0.0130
6 2.231 1.52 0.160 –0.9676 –0.0090

0.3 0.4 3 2.213 1.24 1.412 –0.9194 –0.0273
4 2.324 1.25 1.678 –0.9130 –0.0241
5 2.288 1.37 1.165 –0.9248 0.0036
6 2.800 1.45 1.106 –0.9232 0.0247

0.6 3 2.374 1.22 1.406 –0.9210 –0.0354
4 2.230 1.17 1.641 –0.9170 –0.0447
5 2.083 1.21 1.363 –0.9236 –0.0366
6 2.309 1.32 1.298 –0.9217 –0.0059

0.8 3 2.321 1.15 1.780 –0.9140 –0.0481
4 2.219 1.22 1.247 –0.9251 –0.0351
5 2.001 1.14 1.432 –0.9228 –0.0546
6 2.218 1.21 1.305 –0.9256 –0.0372

0.4 0.4 3 2.799 1.06 4.084 –0.8834 –0.0441
4 2.613 1.10 2.335 –0.9083 –0.0434
5 2.243 1.18 1.781 –0.9154 –0.0212
6 2.686 1.26 1.933 –0.9086 0.0007

0.6 3 2.554 1.05 4.292 –0.8824 –0.0453
4 2.685 1.00 2.930 –0.9037 –0.0694
5 2.327 1.05 2.271 –0.9129 –0.0568
6 2.578 1.15 2.153 –0.9114 –0.0229

0.8 3 2.729 0.96 4.626 –0.8796 –0.0775
4 2.666 1.00 3.907 –0.8885 –0.0633
5 2.281 1.02 2.296 –0.9129 –0.0647
6 2.573 0.50 2.751 –0.9045 –0.0662

0.5 0.4 3 2.793 0.96 3.853 –0.8961 –0.0647
4 2.622 1.09 3.324 –0.8972 –0.0209
5 2.930 1.15 3.289 –0.8929 –0.0042
6 2.934 1.20 2.804 –0.8974 0.0042

0.6 3 2.735 0.92 3.666 –0.9012 –0.0758
4 2.792 0.95 3.833 –0.8972 –0.0651
5 2.585 0.99 3.169 –0.9031 –0.0539
6 2.811 0.98 3.781 –0.8953 –0.0543

0.8 3 3.201 0.86 6.533 –0.8720 –0.0862
4 2.617 0.89 4.038 –0.8993 –0.0861
5 2.716 0.86 4.092 –0.8987 –0.0977
6 2.738 0.90 3.851 –0.8996 –0.0844

Notes. v, H, and σ are the volume density, Hurst exponent, and standard
deviation, respectively, C is a scaling coefficient for intensity (each dou-
ble H-G phase function is to be divided by the corresponding C in order
to allow comparisons), and w∂V , g1, ∂V , and g2, ∂V are the double H-G
parameters. The volume-element phase functions PV (θ) follow from
Eq. (5). The entry shown in boldface results in the best fit displayed
in Fig. 4.

a precision compatible with the observational errors, by a func-
tion that depends on the phase angle α only. This function is then
proportional to PV (θ).

The resulting volume-element phase functions differ from
those experimentally measured for, e.g., large individual Saharan

Fig. 6. The lunar mare volume-element phase function of Fig. 5 aver-
aged using bin size of 0.5◦. We show the best-fit volume-element scat-
tering phase function PV (solid line). For the largest phase angles, there
is a deviation that is probably due to the incapability of the present
model volume-element phase function to fit the observations and to in-
creasing real brightness variegation or correlated observational errors.

sand particles (Munoz et al. 2007). This underscores the differ-
ence of lunar volume-element scattering characteristics as com-
pared to those of compact, optically rather homogeneous parti-
cles with surface roughness.

The lunar backscattering intensity surge can be assigned to
multiple interactions between the fundamental scatterers within
the volume element V . We stress that this multiple scattering
is presently included in what we call the lunar volume-element
phase function representing a scattering volume large enough to
give rise to coherent-backscattering effects.

After carrying out thousands of scalar coherent-
backscattering simulations for varying single-scattering
albedos and phase functions of the fundamental scatterers,
we have converged on computing volume-element scattering
characteristics using 31 single-scattering albedos ω̃0 = 0.60,
0.61, 0.62, . . ., 0.90 and 8 extinction mean free paths � with
k� = 240, 270, 300, . . ., 450. We have utilized a total asym-
metry parameter of g = 0.60, 0.65, 0.70, 0.75 or 0.8 in the
double H-G phase function. In full detail, for the forward and
backward-scattering H-G terms, we have assumed g1 = 0.95
and g2 = −0.33, –0.32, –0.31, . . ., –0.17, respectively, with the
weight factor for the forward-scattering term being determined
by the total asymmetry parameter. Thus, we have used alto-
gether 85 different single-scattering phase functions. For the
final phase of coherent-backscattering modeling, we have thus
computed altogether 21 080 different models for the lunar mare
volume element.

The single-scattering albedo and total asymmetry parame-
ter of the best-fit solution are ω̃0 = 0.73 and g = 0.60. In the
H-G phase function, we have g1 = 0.95 and g2 = −0.31, giv-
ing w = 0.722. The unitless mean free path is k� = 450. The
resulting geometric albedo for the mare regions is p = 0.176.
Figures 7 and 8 show the best-fit coherent-backscattering model
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Fig. 7. The binned lunar mare volume-element phase function with the
corresponding coherent-backscattering modeling including a variation
envelope. Double H-G single-scattering phase functions for the funda-
mental scatterers give rise to coherent-backscattering peaks capable of
matching the observations. For the largest phase angles, there is a devi-
ation between the model and the observations potentially due to simpli-
fied modeling.

Fig. 8. As in Fig. 7 for the phase-angle range of 0◦ ≤ α ≤ 30◦.

with a variation envelope among the sequence of models for
spherical media of fundamental scatterers mimicking the volume
element in the lunar surface. For 180 data points of the binned
volume-element phase function with assumed observational er-
ror standard deviation of 0.03 for points with α < 60◦ and 0.1
for points with α ≥ 60◦, the χ2 value of the best fit is 0.928. The
variation envelope corresponds to models with χ2-values within

Fig. 9. Lunar mare single-scattering phase function P0 of the funda-
mental scatterers (see Eq. (4)) expressed as a double H-G function with
a variation envelope.

a factor of 1.3 from the best-fit value. The threshold χ2-value has
been chosen on the basis of the fluctuations of the H-G models
to offer a view of how well, overall, the models fit the observa-
tions. There are particularly good fits to the observational data all
through the parameter phase space of ω̃0, g, g1, g2, and k� and,
given the heuristic characteristics of the present modeling, the
best-fit solutions have been allowed to occur at the bounds of the
parameters g and k�. Clearly, acceptable fits could be obtained
with less forward scattering double H-G phase functions (i.e.,
smaller g-values) and longer mean free path lengths. Figure 9
shows the best-fit single-scattering phase function among the
models utilized and its variation envelope corresponding to the
aforedescribed χ2 analysis.

There is qualitative agreement between the chosen dou-
ble H-G function and the numerical light-scattering computa-
tions for wavelength-scale Gaussian random particles with the
discrete-dipole approximation (Muinonen et al. 2007) as well as
agglomerated debris particles (Zubko et al. 2006). In these cases,
the phase functions show smooth increase of intensity towards
the backward-scattering direction.

Note that the present H-G solution (Fig. 9) resembles the
phase function for solar-system particles in Bowell et al. (1989,
their Fig. 1). The phase functions from different sources should,
however, be compared with caution as their interpretation can
significantly differ. We stress that more detailed modeling in-
cluding polarization is to be carried out in the future using the
methods described in Muinonen et al. (2010), Muinonen (2004),
and Boehnhardt et al. (2004).

5. Conclusions

Based on the present theoretical modeling of the lunar photom-
etry from SMART-1 AMIE, we conclude that most of the lu-
nar mare opposition effect is caused by coherent backscattering
within ∼100-μm volume elements comparable to lunar particle
sizes, with only a small contribution from shadowing effects. We
suggest that the lunar fundamental scatterers exhibit increase in
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scattered intensity towards the forward direction as well as the
backward direction. These characteristics resemble those exper-
imentally measured and theoretically computed for realistic sin-
gle small particles in free space. Further interpretation for the
phase functions of lunar mare volume elements and fundamen-
tal scatterers is beyond the scope of the present study.

We find that it is possible to derive information about
submicron-to-micron-scale surface properties based on multian-
gular imaging of the target areas. We put forward a novel method
where the stochastic surface geometry is derived from the imag-
ing data, whereafter the reduced data allow the derivation of
information on the small-scale physical properties. The present
modeling paves the way to quantitative interpretation of the po-
larization ratios experimentally measured for lunar samples by
Hapke et al. (1993). More generally, the modeling can be con-
sidered as a beginning of a synoptic approach to explaining all
observational and experimental data on scattering by the lunar
regolith.

The Moon has been imaged by AMIE onboard SMART-1
with three color filters in addition to the panchromatic channel.
A global disk-resolved multi-filter study similar to the one re-
ported in Hillier et al. (1999) for Clementine images is possible
and will remain as a topic for future studies. Note that Mare
Serenitatis (area 4 in Fig. 1) is one of the Lunar International
Calibration Targets (L-ISCT) proposed by Pieters et al. (2008).

Further theoretical and numerical development of the present
methods can result in application to other lunar regions observed
by various missions. In the recent years, the Moon has been
studied by four space missions in addition to SMART-1, namely
Kaguya (Selene), Chandrayaan 1, Chang’e 1, and the currently
operating Lunar Reconnaissance Orbiter and Chang’e 2. They
have extensively mapped the lunar surface with various resolu-
tions in UV/Vis wavelengths. As the calibrated photometric data
from these missions is becoming available, applying the present
theoretical modelling to the combined data from all possible lu-
nar missions to obtain global disk-resolved analyses of single-
scattering phase functions and stochastic surface geometry is
emerging as an attractive opportunity.
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